

Werkstoff

OHA-Graphit ist ein asbestfreies Dichtungsmaterial aus expandiertem Graphit mit einem Edelstahl-Spießblechträger.

Eigenschaften

OHA-Graphit zeichnet sich durch eine außergewöhnlich gute chemische und thermische Beständigkeit, hohe Kompressibilität, das heißt gute Anpassungsfähigkeit an unebene und rauhe Dichtflächen aus. Eine geringe Setzneigung, gute Gasdichtheit und gleichbleibende Materialeigenschaften auch bei wechselnden Betriebsbedingungen sind weitere Merkmale des Materials. Der Spießblechträger bewirkt eine sehr gute Beständigkeit gegen Ausblasen bei hohen Betriebsdrücken.

Einsatzbereiche

Für die Abdichtung bei hohen Temperaturen sowie aggressiven Medien im Rohrleitungs-, Maschinen-, Apparatebau, in Chemieanlagen, Kraftwerken und im Energieversorgungsbereich, insbesondere auch in Dampfleitungen.

Herkunft der Angaben

Die Angaben beruhen auf Laboruntersuchungen, Erfahrungen und insbesondere bei der Beständigkeit der Einfassungs- und Trägermetalle auf Literaturrecherchen. z. T. auch auf Analogieschlüssen. Daher kann im Einzelfall keine Garantie übernommen werden, zumal die chemische Beständigkeit auch von den Einbaubedingungen abhängt. Nut- und Federflansche und/ oder hohe Flächenpressung erhöhen die Betriebssicherheit. Geringe Flächenpressung reduziert dagegen Betriebssicherheit und u.U. die max. Einsatztemperatur.

Temperaturgrenzen

Sofern keine Temperaturen genannt sind, gelten Schmelzpunkte der Medien als Anhaltspunkte für die max. Betriebstemperatur. Diese Grenzen gewährleisten auch bei weniger optimalen Einbauverhältnissen noch ein hohes Maß an Sicherheit.

Freigaben (g	eprüft und zugelassen)
DVGW:	
VP401:	
KTW/W270:	nähere Informationen finden Sie auf: www.haas.de/Qualitaetsmanagement
BAM:	

Im Einzelfall können die Betriebstemperaturen wesentlich höher sein und bis an die maximale Einsatzgrenze von Graphit an Luft von ca. 450 $^{\circ}$ C reichen.

Lieferform

German Lloyd:

Platten: 1000 mm x 1000 mm
Dichtungen: DIN EN 1514-1
Dicke: 2,0 mm
Toleranzen: nach DIN 28091-1

Montagehinweise

Empfehlungen für Flachdichtungen

Der korrekte Einbau ist Grundvorausetzung für das zuverlässige Funktionieren einer Dichtung. Dichtflächen und Schrauben müssen entsprechend der für die Dichtung mindestens benötigten und der maximal zulässigen Flächenpressung gewählt werden. (Technische Daten hierzu entnehmen Sie der Tabelle).

Technische Daten (Nenndicke 2 mm)			
Einsatztemperatur, max.: kurzzeitig dauernd		[°C] [°C]	550 450
Betriebsdruck, max. 450°C		[bar]	100
Reinheit der Graphitauflage: Aschegehalt Chloridgehalt		[%] [ppm]	<2 <50
Ausgangsdichte der Graphitauflage		[g/cm³]	1,0
Träger: Ausführung Werkstoff Dicke		[mm]	Spießblech 1,4401 0,1
Druckstandfestigkeit 16h, 300°C	DIN 52913	[N/mm²]	≥ 48
Zusammenpressung	ASTM F136J	[%]	30 - 45
Rückfederung	ASTM F136J	[%]	10 - 20
Dichtwirkung gegen Stickstoff	DIN 3535 Teil 6	[cm³/min]	<0,8
Quellung in Öl IRM 903, 5h 150°C: Dickenzunahme (ersetzt ASTM Öl Nr. 3) Gewichtszunahme	ASTM F 146J	[%] [%]	<5 <20
Min. Flächenpressung im Einbauzustand (σ_{vo})	DIN 2505E	[N/mm²]	30
Max. Flächenpressung im Einbauzustand (σ_{vo})	DIN 2505E	[N/mm ²]	150
Max. Flächenpressung im Betriebszustand bei 300°C (σ₅ο)	DIN 2505E	[N/mm²]	140

Bitte beachten Sie:

- Nur neue, unbeschädigte und trockene Dichtungen verwenden.
- Dichtstellen sorgfältig reinigen, ohne sie zu verkratzen; Dichtstellen
- Dichtungen zentrisch auflegen; keine Hilfsmittel Fette, Trennmittel oder Dichtmassen) auf Dichtungen oder Dichtstellen aufbringen.
- Keine korrodierten Schrauben, Muttern oder Unterlegscheiben verwenden; errechnete und tatsächliche Flächenpressung müssen übereinstimmen, deshalb Schrauben und Muttern mit Schmiermittel einstreichen.
- Zweite Dichtstelle planparallel montieren und Schrauben festziehen.
- Zum Erreichen einer gleichmäßigen Pressverteilung definierter Schraubenanzug "über Kreuz" in mindestens 3 Stufen.

Beispiel: 1. Stufe: 10 % des erforderlichen Drehmoments.

- 2. Stufe: 50 % des erforderlichen Drehmoments.
- 3. Stufe:100 % des erforderlichen Drehmoments.
- Alle Schrauben müssen das gleiche erforderliche Drehmoment aufweisen.
- Jede Dichtung setzt sich, besonders bei längerer Standzeit; vor erster Inbetriebnahme Schrauben erneut auf 100% des Dehmoments nach-

Abluft, Abgas lösungsmittelfrei		Calciumhypochlorit, < 5%, siedend	_	Ethylglykol	Ī
Abwasser		Calciumhypochlorit, < 20%, 23 ℃		Farbflotte, neutral	
Acetaldehyd		Caprolactam	_	Farbflotte, alkalisch	
Aceton		Chlor, flüssig, trocken		Farbflotte, sauer	
Acetylen		Chloroform		Fluor	
Acrolein		Chlorparaffine		Flüssiggas	
Acrylsäure		Chlorphenole		Flusssäure	
Adipinsäure		Chlorsilane		Formaldehyd, wässrige Lösung	
Aldehyde		Chromsäure, 50%, 23 ℃		Freone, Frigene (FCKW, BrFCKW, FKW)	
Alkohole		Cyclohexan		Getriebeöl	
Ameisensäure 10%		Cyclopentanol		Glykole	
Amine		Dampf		Glyzerin	
Ammoniak, flüssig		Dichlorbenzol		Halone (FCKW, BrFCKW, FKW)	
Ammoniak, gasförmig		Dichlorethan		Halogenierte Kohlenwasserstoffe	
Ammoniak, wässrige Lösung		Dichlormethan		Heißwasser	
Anilin		Dieselkraftstoff		Heizöl	
Argon	•	Diethylenglylol		Hochofengas	
Äther		Diethylether		Hydraulikflüssigkeiten, Glykolbasis	
Benzin		Dimethylamin		Hydraulikflüssigkeiten, Mineralölbasis	
Benzoesäure		Dimethylformamid		Hydraulikflüssigk., Phosphorsäureesterbas.	
Benzol		Dimethylsiloxan		Hydraulikflüssigkeiten, Rapsölesterbasis	
Benzolsulfonsäure	-	Entsalztes Wasser		Hydrochinon	
Benzychlorid	•	Epichlorhydrin		Isobutanol	
Bitumen		Erdgas		Isooctan	
Blausäure	•	Erdöl		Isopropanol	
Bleichlauge, < 5% siedend	-	Essigsäure bis 100%		Jodwasserstoffsäure	
Bleichlauge, < 20%, 23 °C		Ester	-	Kalilauge	ĺ
Bremsflüssigkeiten, Glykolbasis		Ethan		Kalium bis 350 °C	
Bromwasserstoff, wässrige Lösung	-	Ethanol		Kaliumhydroxid, geschmolzen, bis 400 °C	
Butadien		Ethylacetat		Kaliumhypochlorit, < 5% siedend	
Butan	•	Ethylalkohol	-	Kaliumhypochlorit, < 20%, 23 °C	
Butanol		Ethylen, Ethylenglykol		Kaliumpermanganat	
Buttersäure	•	Ethylenoxid		Kältemittel (FCKW, BrFCKW, FKW)	
Butylacetat		Ethylether		Kältemittel R 134a	

esselspeisewasser	Paraffin, -öl		Schmieröle	
letone	Perchlorethylen		Schwefel, < 115 °C	
Kochsalz, wässrige Lösung	Petrolether		Schwefeldioxid, trocken oder feucht	
Kohlendioxid, Kohlensäure	Petroleum		Schwefelkohlenstoff	
Kohlenmonoxid	Pflanzenöle und -fette		Schwefelsäure, < 7,5%, 23 ℃	
Kohlenwasserst., aliphatisch od. aromat.	Phenol		Schwefelsäure, > 7,5%	
Kondensat	Phosphor		Schwefeltrioxid	
Kresole	Phosphorsäure, < 45%, siedend		Schwefelwasserstoff, < 150 °C	
Kühlwasser	Phosphorsäure, konzentriert, siedend		Schweflige Säure, < 300 °C	
Kunstharzdispersion, wässrig	Phosphortrichlorid, trocken		Siliconöl	
Luft	Phthalsäure		Soda, wässrige Lösungen	
Marlotherm	Phthalsäureanhydrid		Spindelöle	
Maschinenöle	Polyacrylnitril		Spiritus	
Meerwasser	Polyamid		Stickstoff	
Melamin	Propan		Styrol	
Mercaptane, -tide	Propanole		Superbenzin	
Methan	Propionaldehyd		Teer	
Methanol	Propionsäure		Teeröl	
Methylacetat	Propylenoxid		Terpentin	
Mehtylchlorid	Pyridin		Tetrachlorethylen	
Methylenchlorid	Pyrrolidin		Tetrachlorkohlenstoff	
Methylethylketon	Rauchgas		Tetrahydrofuran	
Mineralöle	Salpetersäure, < 65% siedend		Tetramethylsilan	
Motoröle	Salpetersäure, > 65%		Thiophen	
Naphtha	Salze, geschmolzen		Tierische Fette und Öle	
Natrium, geschmolzen	nicht oxidierend (Borate, Chloride)	bis 🔳	Toluol	
Natriumdichromat, < 20%	oxidierend (Nitrate, Chloride)		Transformatorenöle (Basis Mineralöle)	
Natriumhypochlorit, < 5%, siedend	Salze, wässrige Lösungen		Trichlorethylen	
Natriumhypochlorit, < 20%, 23 °C	Bromide, Fluoride	bis 🔳	Vinylacetat	
Natronlauge	Chloride		Vinylchlorid	
Nitrobenzol	nicht oxidierend (Carbonate, Nitrate,		Wärmeträgeröle	Ī
Nitrochlorbenzol	Phosphate, Sulfate, usw.)		Wasser	
Nitrose Gase, feucht	oxidierend (Chromate,Hypochlorite)	bis 🔳	Wasserdampf	Ī
Nitrose Gase, trocken	Salzsäure		Wasserstoff	
Organische Säuren	Sattdampf		Wasserstoffperoxid, < 85%	